千葉大学 大学院工学研究科・工学部


山田 真澄
ヤマダ マスミ
Masumi Yamada
准教授
共生応用化学専攻
共生応用化学コース
共生応用化学科
バイオプロセス化学研究室
043-290-3398
043-290-3398
m-yamada@
(@マーク以下にfaculty.chiba-u.jpと入力してください。)
http://chem.tf.chiba-u.jp/gacb01/
2001.3 東京大学工学部化学生命工学科
2003.3 東京大学大学院工学系研究科 修士(工学)
2006.3 東京大学大学院工学系研究科 博士(工学)
2003.4 日本学術振興会特別研究員DC1
2006.4 日本学術振興会特別研究員SPD
2006.4 東京女子医科大学先端生命医科学研究所 博士研究員
2008.4 マサチューセッツ工科大学 Postdoctoral Affiliate
2009.2 千葉大学大学院工学研究科 テニュアトラック特任准教授
2013.4 現職
化学工学会、化学とマイクロ・ナノシステム学会、日本生物工学会、日本バイオマテリアル学会、日本再生医療学会、電気学会
生物化学工学、マイクロフルイディクス、微細加工、生体組織工学、分析化学
マイクロ・ナノフルイディクスを利用した、新しい化学・生物プロセスの構築
(43) Patterned Hydrogel Microfibers Prepared by Using Multilayer Microfluidic Devices for Guiding Network Formation of Neural Cells, Biofabrication, 6 (3), 035011 (2014).

(42) Facile Fabrication Processes for Hydrogel-based Microfluidic Devices Made of Natural Biopolymers, Biomicrofluidics, 8 (2), 024115 (2014).

(41) One-step Synthesis of Spherical/nonspherical Polymeric Microparticles Using Non-equilibrium Microfluidic Droplets, RSC Advances, 4 (24), 13557–13564 (2014).

(40) Microfluidic Production of Single Micrometer-sized Hydrogel Beads Utilizing Droplet Dissolution in a Polar Solvent, Biomicrofluidics,7 (5), 054120 (2013).

(39) Magnetophoresis-integrated Hydrodynamic Filtration System for Size- and Surface marker-based Two-dimensional Cell Sorting
Anal. Chem., 7666–7673 (2013).

(38) Preparation of Stripe-patterned Heterogeneous Hydrogel Sheets Using Microfluidic Devices for High-density Coculture of Hepatocytes and Fibroblasts
J. Biosci. Bioeng., 116 (6), 761–767 (2013).

(37) Automated Construction System for 3D Lattice Structure Based on Alginate Gel Fiber Containing Living Cells
J. Robotics. Mechatronics, 25 (4), 665–672 (2013).

(36) Formation of Cell Aggregates Using Microfabricated Hydrogel Chambers for Assembly into Large Tissues
J. Robotics Mechatronics, 25 (4), 682–689 (2013).

(35) A Droplet-based Microfluidic Process to Produce Yarn-ball-shaped Hydrogel Microbeads
RSC Advances, 3 (30), 12299–12306 (2013).

(34) Microfluidic Counterflow Centrifugal Elutriation System for Sedimentation-based Cell Separation
Tomoki Morijiri, Masumi Yamada, Toshikatsu Hikida, and Minoru Seki
Microfluid. Nanofluid., 14 (6), 1049–1057 (2013).

(33) Micropatterning of Hydrogels on Locally Hydrophilized Regions on PDMS by Stepwise Solution Dipping and in situ Gelation
Langmuir, 28 (39), 14073–14080 (2012).

(32) Controlled Formation of Heterotypic Hepatic Micro-Organoids in Anisotropic Hydrogel Microfibers for Long-Term Preservation of Liver-Specific Functions
Biomaterials, 33 (33), 8304–8315 (2012).

(31) Isolation of Cell Nuclei in Microchannels by Short-term Chemical Treatment via Two-Step Carrier Medium Exchange
Biomed. Microdev., 14 (4), 751–757 (2012).

(30) Microfluidic Synthesis of Chemically and Physically Anisotropic Hydrogel Microfibers for Guided Cell Growth and Networking
Soft Matter, 8 (11), 3122–3130 (2012).

(29) Fluidic Shear-Assisted Formation of Actuating Multilamellar Lipid Tubes Using Microfabricated Nozzle Array Device
Chem. Commun., 47 (29), 8433–8435 (2011).

(28) Generation of Uniform-size Droplets by Multistep Hydrodynamic Droplet Division in Microfluidic Circuits
Microfluid. Nanofluid., 11 (5), 601–610 (2011).

(27) Observation of Non-spherical Particle Behaviors for Continuous Shape-based Separation Using Hydrodynamic Filtration
Biomicrofluidics, 5 (2), 024103 (2011).

(26) Sedimentation Pinched-flow Fractionation for Size- and Density-based Particle Sorting in Microchannels
Microfluid. Nanofluid., 11 (1), 105–110 (2011).

(25) Sol-gel Based Fabrication of Hybrid Microfluidic Devices Composed of PDMS and Thermoplastic Substrates
Sens. Actuators B: Chem., 148 (1), 323–329 (2010).

(24) Rapid Quantification of Disease-marker Proteins Using Continuous-flow Immunoseparation in a Nano-sieve Fluidic Device
Anal. Chem., 81 (16), 7067–7074 (2009).

(23) In-channel Focusing of Flowing Microparticles Utilizing Hydrodynamic Filtration
Microfluid. Nanofluid., 6 (4), 571–576 (2009).

(22) Patterning Reactive Microdomains inside PDMS Microchannels by Trapping and Melting Functional Polymer Particles
J. Am. Chem. Soc., 130 (43), 14044–14045 (2008).

(21) Blood Cell Classification Utilizing Hydrodynamic Filtration
IEEJ Transactions on Sensors and Micromachines, 128-E (10), 396–401 (2008).
Electronics and Communications in Japan, 94 (1), 1-6 (2011).

(20) Millisecond Treatment of Cells Using Microfluidic Devices via Two-step Carrier-medium Exchange
Lab Chip, 8 (5), 772–778 (2008).

(19) Hydrodynamic Control of Droplet Division in Bifurcating Microchannel and Its Application for Particles Synthesis
J. Colloid Interf. Sci., 321 (2), 401–407 (2008).

(18) Continuous and Size-dependent Sorting of Emulsion Droplets Using Hydrodynamics in Pinched Microchannels
Langmuir, 24 (8), 4405–4410 (2008).

(17) Continuous and Precise Particle Separation by Electroosmotic Flow Control in Microfluidic Devices
Electrophoresis, 29 (7), 1423–1430 (2008).

(16) Development of a Micro-scale Cell Culture System for Strawberry Using Microfabricated Devices
Funct. Plant Sci. Biotechnol., 1 (2), 355–360 (2007).

(15) On-chip Cell Migration Assay Using Microfluidic Channels
Biomaterials, 28 (27), 4017–4022 (2007).

(14) Microfluidic Devices for Size-dependent Separation of Liver Cells
Biomed. Microdev., 9 (5), 637–645 (2007).

(13) Rapid Quantification of Bacterial Cells in Potable Water Using a Simplified Microfluidic Device
J. Microbiol. Methods, 68 (3), 643–647 (2007).

(12) Continuous Separation of Particles Using a Microfluidic Device Equipped with Flow Rate Control Valves
J. Chromatogr. A, 1127 (1-2), 214–220 (2006).

(11) A Microfluidic Flow Distributor Generating Stepwise Concentrations for High-throughput Biochemical Processing
Lab Chip, 6 (2), 179–184 (2006).

(10) Microfluidic Particle Sorter Employing Flow Splitting and Recombining
Anal.Chem., 78 (4), 1357–1362 (2006).

(9) Hydrodynamic Filtration for On-chip Particle Concentration and Classification Utilizing Microfluidics
Lab Chip, 5 (11), 1233–1239 (2005).

(8) Development of a Passive Micromixer Adopting Repeated Fluid Twisting and Flattening, and Its Application to DNA Purification
Anal. Bioanal. Chem., 383 (5), 776–782 (2005).

(7) Separation of Cultured Strawberry Cells Producing Anthocyanins in Aqueous Two-Phase System
J. Biosci. Bioeng., 100 (4), 449–454 (2005).

(6) Continuous Particle Separation in a Microchannel Having Asymmetrically-Arranged Multiple Branches
Lab Chip, 5 (7), 778–784 (2005).

(5) Control-free Air Vent System for Ultra-low Volume Sample Injection on a Microfabricated Device
Anal. Sci., 21 (4), 465–468 (2005).

(4) Continuous Cell Partitioning Using an Aqueous Two-phase Flow System in Microfluidic Devices
Masumi Yamada, Vivi Kasim, Megumi Nakashima, Jun’ichi Edahiro, and Minoru Seki
Biotechnol. Bioeng., 88 (4), 489–494 (2004).

(3) Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel
Anal. Chem., 76 (18), 5465–5471 (2004).

(2) Pressure-driven Sample Injection with Quantitative Liquid Dispensing for On-chip Electrophoresis
Anal. Sci., 20 (3), 483–487 (2004).

(1) Nanoliter-sized Liquid Dispenser Array for Multiple Biochemical Analysis in Microfluidic Devices
Anal. Chem., 76 (4), 895–899 (2004).
生体高分子化学、医用材料学(メディカル)、生物情報化学(大学院)、共生応用化学実験(高分子)